If it's not what You are looking for type in the equation solver your own equation and let us solve it.
h^2-5h-13=0
a = 1; b = -5; c = -13;
Δ = b2-4ac
Δ = -52-4·1·(-13)
Δ = 77
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{77}}{2*1}=\frac{5-\sqrt{77}}{2} $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{77}}{2*1}=\frac{5+\sqrt{77}}{2} $
| 7(3r-7)—(r+5)=-52 | | -(8m+7)=3(13-m) | | 8x+7(x-7)=-4 | | (2y+10)+30=180 | | 7(v+5)-2v=-15 | | -2(7x-8)+1=-14x+17 | | 7-2x=x+16 | | 3x2-4x+6=0 | | 4(3w-3)=-13(2-w) | | 1-y/4=1 | | .7(x+100)=0.77x-476 | | (-16x+13)+(-20x+23=180 | | y/44+22=19 | | 9(3x+6)-6(7-3)=12 | | 5=2q/3-1 | | 0.12(y-4)+0.06y=0.08y-0.07(10) | | 4x-6+12=36 | | 8z+4/5=9z+1/5 | | 1/2m-3=1/4m+3 | | 2x^2+5=4x+6 | | y+(y+-50)=180 | | y+(y+50)=180 | | 6-y=5y+30 | | 20x+12=3x-2 | | 8k-2/9=6 | | 41=29-2(x-2) | | 2(×+1)/6=3x-5 | | z+4/7=-2 | | m/9+4=7 | | -31=-6n-7 | | 54²=6s² | | 5x^2-3=10x+12 |